Classification of multisource and hyperspectral data based on decision fusion
نویسندگان
چکیده
Multisource classification methods based on neural networks and statistical modeling are considered. For these methods, the individual data sources are at first treated separately and modeled by statistical methods. Then several decision fusion schemes are applied to combine the information from the individual data sources. These schemes include weighted consensus theory where the weights of the individual data sources reflect the reliability of the sources. The weights are optimized in order to improve the combined classification accuracies. Other considered decision fusion schemes are based on two-stage approaches which use voting in the first stage and reject samples if either the majority or all of the classifiers for the data sources do not agree on a classification of a sample. For the second stage, a neural network is used to classify the rejected samples. The proposed methods are applied in the classification of multisource and hyperdimensional data sets, and the results compared to accuracies obtained with conventional classification schemes.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملDecision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping
This study investigates the effectiveness of combining multispectral very high resolution (VHR) and hyperspectral satellite imagery through a decision fusion approach, for accurate forest species mapping. Initially, two fuzzy classifications are conducted, one for each satellite image, using a fuzzy output support vector machine (SVM). The classification result from the hyperspectral image is t...
متن کاملHyperspectral Image Classification on Decision level fusion
In this paper different types of image classification will be studied. Decision level fusion, using a specific criterion or algorithm to integrate the classified results from different classifiers, has shown great benefits to improve classification accuracy of multi-source remote sensing images. Based on a survey to hyperspectral remote sensing classification techniques and decision level fusio...
متن کاملA decision fusion method based on multiple support vector machine system for fusion of hyperspectral and LIDAR data
Fusion of remote sensing data from multiple sensors has been remarkably increased for classification. This is because, additional sources may provide more information, and fusion of different information can produce a better understanding of the observed site. In the field of data fusion, fusion of light detection and ranging (LIDAR) and optical remote sensing data for land cover classification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 37 شماره
صفحات -
تاریخ انتشار 1999